Properties of the Moreau-Yosida regularization of a piecewise C2 convex function
نویسندگان
چکیده
In this paper we discuss second-order properties of the Moreau-Yosida regularization F of a piecewise twice continuously differentiable convex function f . We introduce a new constraint qualification in order to prove that the gradient of F is piecewise continuously differentiable. In addition, we discuss conditions, depending on the Hessians of the pieces, that guarantee positive definiteness of the generalized Jacobians of the gradient of F.
منابع مشابه
On Second-order Properties of the Moreau-Yosida Regularization for Constrained Nonsmooth Convex Programs
In this paper, we attempt to investigate a class of constrained nonsmooth convex optimization problems, that is, piecewise C2 convex objectives with smooth convex inequality constraints. By using the Moreau-Yosida regularization, we convert these problems into unconstrained smooth convex programs. Then, we investigate the second-order properties of the Moreau-Yosida regularization η. By introdu...
متن کاملLagrangian-Dual Functions and Moreau--Yosida Regularization
In this paper, we consider the Lagrangian dual problem of a class of convex optimization problems. We first discuss the semismoothness of the Lagrangian-dual function φ. This property is then used to investigate the second-order properties of the Moreau-Yosida regularization η of the function φ, e.g., the semismoothness of the gradient g of the regularized function η. We show that φ and g are p...
متن کاملPractical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries
When computing the infimal convolution of a convex function f with the squared norm, the so-called Moreau–Yosida regularization of f is obtained. Among other things, this function has a Lipschitzian gradient. We investigate some more of its properties, relevant for optimization. The most important part of our study concerns second-order differentiability: existence of a secondorder development ...
متن کاملSemismoothness of solutions to generalized equations and the Moreau-Yosida regularization
We show that a locally Lipschitz homeomorphism function is semismooth at a given point if and only if its inverse function is semismooth at its image point. We present a sufficient condition for the semismoothness of solutions to generalized equations over cone reducible (nonpolyhedral) convex sets. We prove that the semismoothness of solutions to the Moreau-Yosida regularization of a lower sem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 84 شماره
صفحات -
تاریخ انتشار 1999